The beta subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme.

نویسندگان

  • G Tomer
  • N B Reuven
  • Z Livneh
چکیده

The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD' and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the beta subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the beta subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the beta subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly -1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD', UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the beta subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the Pol III–clamp–exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair

DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ε that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III-clamp-exonuclease complex by chemical crosslinking combined with mass spectrometry and bioc...

متن کامل

Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme.

The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equi...

متن کامل

Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly.

Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function o...

متن کامل

An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps.

The replicase of E. coli, DNA polymerase III holoenzyme, is tightly fastened to DNA by its ring-shaped beta sliding clamp. However, despite being clamped to DNA, the polymerase must rapidly cycle on and off DNA to synthesize thousands of Okazaki fragments on the lagging strand. This study shows that DNA polymerase III holoenzyme cycles from one DNA to another by a novel mechanism of partial dis...

متن کامل

The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.

The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 24  شماره 

صفحات  -

تاریخ انتشار 1998